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Abstract—The utilisation of smart antenna (SA) techniques in future wireless and cellular networks is expected to have an impact on the efficient 
use of the spectrum and the optimization of service quality. This is because SAs can enhance the maximization of output power of the signal in 
desired directions amongst a whole lot of functions. In spite of these benefits of SAs, long range communications still face unsolved challenges 
such as signal fading. Therefore, this paper focuses on enhancing the recursive least squares (RLS) in SA design for long range communication 
networks. The conventional RLS algorithm does not need any matrix inversion computations because the inverse correlation matrix is 
determined directly. Therefore, the RLS saves computational power. Hence, we have enhanced the RLS algorithm by introducing a constant 풎 
to the gain factor in order to yield an improved gain vector. Results obtained from our simulations show that the enhanced RLS reduces mean 
square error (MSE), smoothens filter output and improves SNR when compared to the conventional methods. These benefits further result in 
antenna the gain improvement leading to an increased range and directivity of the smart antenna over a long range communication networks. 
 
Index Terms— Smart antennas; direction of arrival; adaptive arrays; switched beam arrays; digital signal processing; mobile communication; 
wireless networks. 

——————————      —————————— 
 
 

1 INTRODUCTION  
Over the past decade, wireless and mobile 
communications have experienced a rapid growth in the 
demand for the provision of new wireless multimedia 
services such as: internet access, multimedia data transfer 
and video conferencing [1]. In order to meet such demands 
and to overcome the limited capacity of the single input 
single output (SISO) systems, the use of multiple element 
antennas (MEAs) has recently emerged as a solution [2]. 
Smart antenna (SA) is defined as a system which combines 
an antenna array with a digital signal processing capability 
in order to transmit and receive in an adaptive, spatially 
and sensitive manner [18]. SAs have the property of spatial 
filtering and this property makes it possible for the SA to 
receive energy from a particular direction whilst at the 
same time, blocking the energy from getting to another 
direction. SAs can also be referred to as adaptive array 
antennas or simply multiple input, multiple output 
(MIMO) antennas having antenna arrays with smart signal 
processing algorithms used to identify spatial signal 
signature such as the direction of arrival (DOA) of the 
signal [3]. The SA can be used to calculate beamforming 
vectors which track and locate the antenna beam on the 
mobile receivers in a cellular network.  

There are two main functions of SAs which are 
performing direction of arrival (DOA) and beamforming 
respectively [3]. SA designs involve the processing of 
signals induced on an array of antennas. Beamforming is 
an ability achieved by SAs to increase the range and 
capacity of a signal that is transmitted or received. 

  

Adaptive filtering is a technique in which the weights of 
an adaptive antenna are updated [19]. In recent years, 
adaptive algorithms have been used to perform the 
function of filtering. The performance of most adaptive 
algorithms largely depends on the condition of their signal 
and filter order. Whereas, the performance of the recursive 
least squares (RLS) algorithm is dependent on the 
forgetting factor 휆. A complex weight is the combination of 
the relative amplitude and phase shift for each antenna [4]. 
The RLS algorithm is known for its superiority over most 
adaptive algorithms like the least mean squares (LMS), 
constant modulus algorithm (CMA), etc. because of its 
faster rate of convergence and smaller mean square error 
(MSE) [5]. Several techniques have been proposed by 
authors in [4, 5 and 9] that provided significant 
improvements in the performance of the conventional RLS 
algorithm. However, these improvements came with a 
high cost in computational complexity [6].  

 
This paper presents an enhanced RLS based design that 

improves the gain and directivity of SA over long range 
communication networks. We build our approach from the 
argument that the gain vector 푘(푛) is essential in the 
performance of the RLS algorithm. This is because the 
output of the RLS filter is usually computed when there is 
a convolution of the input sample, tap coefficients 푢(푛) 
and the weight vector 푤(푛). The weight vector on the other 
hand is updated by taking the product of the gain vector 
푘(푛) with the error signal 푒(푛) [20]. Hence, it is for this 
reason that we have proposed the enhancement of the gain 
vector 푘(푛) in this paper. We infer that an enhancement of 
the gain vector 푘(푛) will lead to a consequential 
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improvement in the convergence rate of the RLS 
algorithm.   

 
The rest of the paper is organised as follows: section II 

presents literature review on related work, section III 
focuses on our system model, section IV shows the 
performance evaluation and results of the enhanced RLS 
algorithm and section V concludes the paper. In sections 
VI and VII, we indicate the acknowledgements and 
references respectively. 

2 RELATED WORK  
We see from literature in [7] that adaptive antenna arrays 
incorporate more intelligence into their control system 
than the switched-beam arrays. The adaptive array model 
utilizes digital algorithms which produces beamforming in 
a noisy wireless network. The figure below (fig. 1) 
illustrates a beamforming signal of an adaptive array 
antenna to a specific user which also has some interfering 
signals that are of the same frequency as the beamforming 
signal from different directions. These interfering signals 
are rejected by varying the weights varying the weights of 
each antenna element in the array.  

 

 
Figure 1: Adaptive array antenna [8] 

Authors in [9] presented an overview of the benefits of 
smart antenna transceiver architecture. They also 
presented the important shift in the appropriation of SAs 
in future systems such as: re-configurability to varying 
channel propagation and network conditions, cross-layer 
optimization, multi-user diversity. However, there were 
challenges such as the design of a suitable simulation 
methodology and the accurate modelling of channel 
characteristics, interference, implementation losses that 
were presented in [9]. Hybrid schemes that combine space-
time coding and beamforming were proposed in [10]. 
These schemes introduce precoding to exploit the available 
CSI when optimizing a certain criterion (e.g., pair-wise 
error probability). 

 
A methodical comparison of the performance of 

different adaptive algorithms for beamforming for SA 
system was presented in [11]. The study also considered 

the strengths and weaknesses of the three algorithms that 
were used. They were namely: Recursive Least Squares 
(RLS), Least Mean Squares (LMS) and Constant Modulus 
Algorithm (CMA). It was also stated in [11] that the high 
error rate experienced in a single antenna element is due to 
the fact that the antenna would have to provide coverage 
to enhanced number of users which are more than its 
capacity, so the rate of errors increases. The study showed 
that interference rejection is best accomplished in the CMA 
because it has the ability to cancel out interfering signals 
coming from neighbouring networks. Studies further 
showed that the LMS algorithm incorporates an iterative 
technique that successively updates the weight vector in a 
direction which is opposite to the gradient vector. This 
technique eventually makes the LMS minimize the mean 
square error (MSE) when compared to other algorithms. 
The convergence rate of RLS is faster than LMS because the 
RLS algorithm does not require any matrix inversion 
computation as the inverse correlation matrix is directly 
computed [12]. Studies in [13] further showed that the RLS 
algorithm only requires a reference signal and information 
for the correlation matrix in order to compute. These 
qualities made the RLS algorithm the best algorithm for 
implementation on the base station (BS) of a SA system. 
The limiting factor in this study is the closeness in angles 
that the interference and user signals have between each 
other because the SNR had been reduced from 10 dB to 2 
dB.  

 
Authors in [13] used various algorithms to adapt the 

weights of the SA arrays so as to augment the output 
power of the signal in the expected direction and curtail 
the power in the unwanted direction. Also considered 
were different types of arrays such as: linear, circular and 
planar arrays. Different algorithms were used to adjust the 
weights in SA systems. The limitation faced in [13] is that 
both LMS and RLS need a reference signal which has to be 
provided by CMA. These arrays are used to adapt the 
weights of the array which gives the expected parameters 
(main beam steering, deep null placement in the undesired 
signal direction, etc.) under a noisy communication 
channel. Conclusions were made in [13] that the problem 
of slow convergence experienced in the LMS algorithm is 
solved by the RLS algorithm. 

 
Based on the concluding remarks on [11], [13] and [14], 

the RLS algorithm was suggested as the best algorithm that 
will achieve the best beamforming towards desired signals. 
However, some limitations were highlighted in the RLS 
algorithm based on its unsatisfactory response to nullify co 
channel interference (CCI) [15]. Therefore in this study, we 
seek to enhance SA schemes for beamforming over long 
range of communications by further developing the RLS 
algorithm in such a way that a constant 푚 is introduced to 
the gain factor in order to yield an improved gain vector. 
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3 SYSTEM MODEL  
In this section, we model enhanced RLS algorithm by 
adapting the weights 푤(푛) of the filter recursively. And in 
order to adapt the weights, the error signal 푒(푛) and the 
gain factor 푘(푛) must be determined. The error signal are 
determined by calculating the difference between the 
desired signal 푑(푛) and the output signal 푦(푛) of the filter. 
Hence, our work in this chapter is to determine an 
improved value of the gain factor 푘(푛)which will yield 
better the weights of the RLS filter. Figure 2 illustrates how 
the weights 푤(푛) of the RLS filter can be computed.  

 
Figure 2: Adaptive weight computation 

 
The correlation matrix can be used to derive the RLS 
algorithm which has some inefficient calculations as it does 
not consist of some necessary variables that comprise the 
RLS algorithm. However, authors in [16] suggested that in 
order to avoid the computational inefficient calculations of 
Ф (푛), it is advisable to deploy matrix inversion. Matrix 
inversion is usually deployed to avoid computationally 
inefficient calculations of Ф (푛). 
 

Following such matrix inversion, the autocorrelation of the 

tap input vector 푢(푛) of order M-by-M is given by 

Ф (푛) = 	∑ 휆 푢(푖)푢 (푖) + 	훿휆 퐼      (1) 

훿is the Regularizing parameter and 휆 is the forgetting 

factor. M-by-1 cross-correlation matrix of the tap input 

vector 푢(푛) and 푑(푛) is the desired response which is 

given by: 

z(n) = ∑ 휆 푢(푖)푑(푖)               (2) 

For RLS method, tap weight vector 푤(푛) can be calculated 

as  

Ф(푛)푤(푛) = 	푧(푛) OR 

                       푤(푛) = 	Ф (푛)푧(푛)  (3) 

The final equation after using the matrix inversion method 

cited by [16] is: 

Ф (푛) = 	 휆 Ф (푛 − 1) −	  (4) 

휆 Ф (푛 − 1)푢(푛)푢 (푛)Ф (푛 − 1)
1 + 	 휆 푢 (푛)Ф (푛 − 1)푢(푛)

 

푘(푛)is the M-by-1 vector and is known as the gain vector 

and it is defined by the tap input vector 푢(푛) which is 

transformed by the inverse of the correlation matrix 

Ф (푛) 

                푘(푛) = Ф (푛)푢(푛)    (5) 

In order to obtain the RLS weight vector from (5), 

푤(푛) =

	Ф (푛)푧(푛 − 1) + 		Ф (푛)푑(푛)– 	푘(n)푢 (푛)Ф (푛 −

1)푧(푛 − 1)     (6) 

After simplifying the weight vector 푤(푛) in (6), the 

simplified equation for the weight vector is now: 

푤(푛) = 	푤(푛 − 1)+ 푘	(n)	푒(푛),  (7) 

where the error signal푒(푛) is calculated as 

푒(푛) 	= 	푑(푛) 	− 	푦(푛).   (8) 

푃(푛) is the inverse correlation matrix at step 푛; 
푃(푛) = 	Ф− 1(푛).                (9) 

Here, our enhanced gain factor 푘(푛) is given as 
 

              푘(푛)	= ( )
	×	 	 ( ) ( )

 ,  (10) 

where휋(푛) is denoted as 

휋(푛) = 	푃(푛 − 1)푢(푛)  (11) 

We initialize our algorithm by setting 

Step (i)  The weight vector, w(0) = 0 

P(0) = 훿 I 

Step (ii) And the value for δ depends on the SNR i.e, 

δ = 푠푚푎푙푙	푝표푠푖푡푖푣푒	푐표푛푠푡푎푛푡	푓표푟	ℎ푖푔ℎ	푆푁푅푙푎푟푔푒	푝표푠푖푡푖푣푒	푐표푛푠푡푎푛푡	푓표푟	푙표푤	푆푁푅 . 

Step (iii) The value of δ can be verified based on 

regularization grounds. 

Step (iv) And for each instant of time, 푛 = 1,2,3,,4,…  

Step (v)Compute:  

                  휋(푛) = 푃(푛 − 1)푢(푛), 
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푘(푛)	= ( )
	×	 	 ( ) ( )

 and 

 

푃(푛) = 	
푃(푛 − 1) − 푘(푛) ∗ 휋(푛)

휆
 

 
The uniqueness of our improved algorithm relates to 

introducing a constant 푚 to the gain factor 푘(푛) of the RLS 
algorithm in order to improve the gain and directivity of 
the smart antenna used in long range communication 
networks. The result of this enhancement on the gain 
factor will influence the general performance of the 
weights at the output of the adaptive filter shown below. 

 

 
Figure 3: Adaptive Filtering 

The RLS algorithm is a deterministic algorithm in the 
sense that its performance index is the sum of weighted 
error squares for every given data. The weight vector is 
updated after every iteration. 

 
The constant 푚 that has been introduced to the gain 

factor 푘(푛) will be given a value. We have conducted 
several mathematical computations and further 
simulations in order to determine the best possible value of 
푚 that can be introduced to 푘(푛) so that the weighted 
output of our RLS filter outperforms the weights of the 
other adaptive algorithms that have been implemented by 
smart antenna design. Authors in [17] concluded that the 
rate of convergence of adaptive algorithms depends upon 
the value of the step size parameter µ. The value of µ lies 
between 0 and 1. The optimised value of 푚 was initially 
obtained through mathematical computations and then, 
simulation results further affirmed our mathematical 
computation. The constant 푚 was given numbers between 
the range of 0.1 and 1.9. The mathematical computation 
was conducted using the gain constant 푘(푛) in equation 10 
above. The results of the mathematical computation 
showed that 푘(푛) is at an optimum value when 푚 is 0.25. 
Therefore, we have given the constant 푚 the value of 0.25.  

 

 
Figure 4: Computation of our RLS algorithm 

4 PERFORMANCE EVALUATION AND RESULTS 
The performance of RLS based model for smart antenna 
design has been studied by means of MATLAB 
simulations. In these simulations, we have considered 
three cases taking into consideration the error curve, 
system output and the comparison between the filter 
weights and the estimated weights for three adaptive 
algorithms namely: LMS, the conventional RLS and our 
enhanced RLS algorithm. The following parameters have 
been considered for simulation purpose: 

 
TABLE I 

SIMULATION PARAMETERS 

 

 
  The results of the three experiments are presented in 

figs. 4, 5 and 6 below: 
 
The reason for the simulations is to see if the 

enhancment we have made on the gain factor 푘(푛) has an 
effect on the performance of the RLS algorithms. Firstly, 
we run simulations on the mean square errors (MSE). 
Based on the MSE curves in fig. 4 (a, b and c), it can be 
observed that the error curve of the enhanced RLS 
algorithm assumes an error value of below 10-8 before the 
200th iteration. When compared to the error values of the 
conventional RLS algorithm, we see that the error cure 
only assumes a value less than 10-8 after the 500th iteration. 
We also notice a clearer distinction between our enhanced 
RLS algorithm and the LMS algorithm in terms of the error 
values of the MSE. The value of the MSE for the LMS 
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algorithm borders between 10-2 and 10-3. The value of the 
error curve as can be observed in fig. 4a does not come as 
low as that of our enhanced RLS algorithm. These results 
signify lesser errors occurring in our enhanced RLS 
algorithm. Through these results, we can suggest that the 
enhanced RLS algorithm provides better directivity and a 
better SNR over the LMS algorithm and the conventional 
RLS algorithm using the values of the mean square error as 
discussed above. 

 

 
 

(a) LMS error 
 

 
 

(b) Conventional RLS error 
 

 
 

(c) Enhanced RLS error 
 

Figure 4 : Error curve comparison 
Secondly, the graphs in fig. 5a, 5b and 5c respectively 

(below) show the system outputs of the LMS, conventional 
RLS and the enhanced RLS algorithms that are being 
compared. Based on these results, the following can be 

observed: in fig. 5a, the waveform of the LMS algorithm 
initially displayed a lot of noise and spikes. In fig. 5b, the 
pattern of the waveform became clear with fewer spikes 
signifying a less noisy output. Whereas, the enhanced RLS 
algorithm (fig. 5c) displayed almost a smooth waveform at 
the filter’s output; thus signifying a lesser noisy channel. 

 

 
 

(a) LMS system output 
 

 
 

(b) Conventional RLS system output 
 

 
 

(c) Enhanced RLS system output 
 

Figure 5 : Adaptive system output comparisons 
 

The last set of simulations takes into account the weighted 
output of the adaptive filters that we are comparing in this 
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paper. The weights (vertical - axis) are generated 
recursively with respect to the number of samples 
(horizontal - axis).  
Figure 6 (a, b and c) below illustrates the comparison 
between the filter weights and estimated weights of the 
LMS,  conventional RLS algorithm and our enhanced RLS 
algorithm respectively. It can be observed in 6c that as the 
number of steps increases (on the x-axis), the estimated 
weights still continue to track the filter weights (enhanced 
RLS algorithm).  

 
 

 
 

(a) LMS weights comparison 
 

 
 

(b) Conventional RLS weights comparison 
 

 
 

(c) Enhanced RLS weights comparison 

 
Figure 6 : Comparison of adaptive weights 

 
Hence, both waveforms in 6c track each other. Whereas, it 
can be observed that the estimated weights in 6b gradually 
begin to loose track of the filter weights as the number of 
samples increases. Also, a considerable variation can 
observed with the LMS algorithm (fig. 6a); after the first 
sample, the estimated weights begin to drift away from the 
actual weights.  
 

From all the results of our simulations, it can be 
observed that our enhanced RLS algorithm out performs 
both the LMS algorithm and the conventional RLS 
algorithm.  
 

5 CONCLUSION  
In this paper, an RLS based model for smart antenna 
design is discussed. We have enhanced the gain factor 푘(푛) 
of the RLS algorithm in order to improve its performance 
which results to an increase in the gain and the directivity 
of the smart antenna. A constant 푚 has been introduced to 
the gain factor 푘(푛) of the RLS algorithm with an 
expectation of enhancing the performance of the output of 
the adaptive antenna. Results of the simulations carried 
out in figures above, respectively show the following: the 
comparison of MSE, the comparison of the system outputs 
of the different adaptive algorithms and the filter weights 
comparison of the three adaptive algorithms that we 
selected for comparison. These simulations show that the 
enhanced RLS algorithm possesses better performance in 
terms of lower MSE which leads to a quicker rate of 
convergence and directivity of the adaptive algorithm. 
Also, the output of the enhanced RLS algorithm shows a 
smoother waveform thus indicating that it is the best 
adaptive filter; thus eliminating unwanted noise from 
surrounding communication networks. Also, when 
compared to the conventional RLS algorithm and the LMS 
algorithm, the enhanced RLS algorithm possesses weights 
that are almost accurate to the estimated weights. Thus, the 
weight complexity problems usually experienced with 
adaptive filters have been reduced by the introduction of 
our adaptive algorithm. Hence, it can be deduced that 
design proposed in this paper reduces SNR, updates 
weights speedily and increases the rate of convergence of 
the RLS algorithm for SAs over long range communication 
networks. 
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